Histórico
O conceito de spin surgiu da necessidade de se explicar os resultados até então impensados na experiência de Stern-Gerlach na década de 1920. Nessa experiência, um feixe colimado de átomos de prata, oriundos de um forno a alta temperatura, atravessavam um campo magnético altamente não-homogêneo. Tal experiência era destinada a medir a distribuição dos momentos magnéticos, devidos principalmente aos elétrons. Como os átomos, na temperatura em que estavam emergindo do forno, estavam no seu estado fundamental 1S0, deveriam sofrer desvios nulos na presença do campo magnético não-homogêneo. A distribuição esperada era da perda da coerência espacial do feixe durante o seu tempo de vôo, do forno de origem até o alvo. Tal não sucedeu, contudo.
O resultado obtido foram duas manchas de depósito de prata sobre o alvo, indicando que o feixe se dividira em dois durante o percurso. Isso indicou que os átomos de prata do feixe ainda tinham um grau de liberdade de momento angular, mas que não era o momento angular orbital dos elétrons no átomo, mas sim um momento angular intrínseco destas partículas. A esse "momento angular intrínseco" deu-se o nome de spin (significando giro em português).
Em 1924, Wolfgang Pauli postulou que os núcleos comportar-se-iam como minúsculos ímãs. Mais tarde, experiências similares, porém mais sofisticadas, aos do Stern-Gerlach determinaram momentos magnéticos nucleares de várias espécies.
Posteriormente, em 1939, Rabi e colaboradores submeteram um feixe molecular de hidrogênio (H2) em alto vácuo a um campo magnético não-homogêneo em conjunto com uma radiação na faixa das radio-freqüências (RF). Para um certo valor de freqüência o feixe absorvia energia e sofria pequeno desvio. Isso era constatado como uma queda da intensidade observada do feixe na região do detector. Este experimento marca, historicamente, a primeira observação do efeito da ressonância magnética nuclear.
Nos anos de 1945 e 1946 duas equipes, uma de Bloch e seus colaboradores na Universidade de Stanford, e outra de Purcell e colaboradores na Universidade de Harvard procurando aprimorar a medida de momentos magnéticos nucleares observaram sinais de absorção de radio-freqüência dos núcleos de 1H na água e na parafina, respectivamente, pelo que os dois grupos foram agraciados com o prêmio Nobel de Física em 1952.
Quando Packard e outros assistentes de Bloch substituíram a água por etanol, em 1950 e 1951, e notaram que havia três sinais e não somente um sinal1 ficaram decepcionados. Entretanto, esse aparente fracasso veio a indicar alguns dos aspectos mais poderosos da técnica: a múltipla capacidade de identificar a estrutura pela análise de parâmetros originados de acoplamentos mútuos de grupos de núcleos interagentes.
Pouco tempo depois, em 1953, já eram produzidos os primeiros espectrômetros de RMN no mercado, já com uma elevada resolução e grande sensibilidade.
Nos equipamentos de ressonância magnética para imageamento biológico, os núcleos dos átomos de hidrogênio presentes no objeto de análise são alinhados por um forte campo magnético e localizados por bobina receptora devidamente sintonizada na frequência de ressonância destes.
Animação: ressonância magnética
Nesta imagem encontra-se um cérebro a ser auscultado por ressonância magnética.
Espectroscopia de ressonância magnética nuclear
Em espectroscopia, o processo de ressonância magnética é similar aos demais. Pois também ocorre a absorção ressonante de energia eletromagnética, ocasionada pela transição entre níveis de energia rotacionais dos núcleos atômicos, níveis estes desdobrados em função do campo magnético através do efeito Zeeman anômalo.
Como o campo magnético efetivo sentido pelo núcleo é levemente afetado (perturbação essa geralmente medida em escala de partes por milhão) pelos débeis campos eletromagnéticos gerados pelos eletrons envolvidos nas ligações químicas (o chamado ambiente químico nas vizinhanças do núcleo em questão), cada núcleo responde diferentemente de acordo com sua localização no objeto em estudo, actuando assim como uma sonda sensível à estrutura onde se situa.
Magnetismo macroscópico e microscópico
O efeito da ressonâncita magnética nuclear fundamenta-se basicamente na absorção ressonante de energia eletromagnética na faixa de freqüências das ondas de rádio. Mais especificamente nas faixas de VHF.
Mas a condição primeira para absorção de energia por esse efeito é de que os núcleos em questão tenham momento angular diferente de zero.
Núcleos com momento angular igual a zero não tem momento magnético, o que é condição indispensável a apresentarem absorção de energia electromagnética. Razão, aliás, pertinente a toda espectroscopia.
A energia electromagnética só pode ser absorvida se um ou mais momentos de multipolo do sistema passível de absorvê-la são não nulos, além do momento de ordem zero para electricidade (equivalente à carga total).
Para a maior parte das espectroscopias, a contribuição mais importante é aquela do momento de dipolo. Se esta contribuição variar com o tempo, devido a algum movimento ou fenômeno periódico do sistema (vibração, rotação, etc), a absorção de energia da onda electromagnética de mesma freqüência (ou com freqüências múltiplas inteiras) pode acontecer.
Um campo magnético macroscópico é denotado pela grandeza vetorial conhecida como indução magnética B (ver Equações de Maxwell). Esta é a grandeza observável nas escalas usuais de experiências, e no sistema SI é medida em Tesla, que é equivalente a Weber/m3.
Em nível microscópico, temos outra grandeza relacionada, o campo magnético H, que é o campo que se observa a nível microscópico. No sistema SI é medido em Ampere/m.
Leia mais >> Wikkipedia